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Abstract

This thesis considers the following combinatorial optimization problem in discrete geometry:

Given a set of finitely many points in the plane in general position, we want to draw line
segments with one of two colors between each two of those points, such that the number of
monochromatic crossings, i.e., the number of line segment intersections that are of the same
color, is minimized.

In this thesis, several approaches will be discussed including an upper bound heuristics by local
optimization and a lower bound by linear programming. By this approach, the problem has
been solved for up to ten points in the plane by computer.

Zusammenfassung

In dieser Masterarbeit behandeln wir das folgende kombinatorische Optimierungsproblem aus
der diskreten Geometrie:

Gegeben sei eine endliche Menge von Punkten in allgemeiner Lage in der Ebene. Wir wollen die
Strecken zwischen je zwei dieser Punkte in einer von zwei Farben färben, sodass die Anzahl der
monochromatischen Kreuzungen, also die Anzahl der Kreuzungen von Strecken in der gleichen
Farbe, minimal ist.

In dieser Arbeit werden einige Ansätze betrachtet, z.B. wie man mit lokaler Optimierung eine
obere Schranke findet, als auch eine untere Schranke, die man mittels linearen Programmen
erhält. Mit den erwähnten Methoden wurde das Problem für alle Punktmengen in allgemeiner
Lage bis zu zehn Punkten mit Computerunterstützung gelöst.

i



Motivation

Combinatorial optimization is one of the youngest and most active fields in discrete mathemat-
ics. It is related to the topics of graph theory, complexity theory and integer programming ([21],
preface to the first English edition). The field of discrete geometry became popular due to the
Hungarian mathematicians László Fejes Tóth, who formed the term “Intuitive Geometry”, by
which he means geometry that “can be explained to and can appeal to the man of the street.”
[19], and Paul Erdős, as well as the Canadian mathematician Harold Scott MacDonald Coxeter
[26] who combined the theory of polytopes and of non-Euclidean geometry with group theory
and combinatorics. Discrete geometry studies combinatorial geometric problems such as prop-
erties of finite point sets, triangulations, polytopes, drawings and many more in a topological
space, typically in R2 and R3.

The motivation for the main problem that is discussed in this thesis comes from the intention
to understand how a set of finitely many points in the plane behaves geometrically. A very
basic idea is to connect all pairs of points by line segments. By this connection, there might
appear crossings of line segments. An obvious question is: How many crossings do we expect
from a point set? How do the crossings depend on the point set? How can we maximize or
minimize the number of crossings?

It is easy to see that if the points lie in convex position, i.e., they are corners of their convex
hull, all subsets of four points induce a crossing and hence the crossing number is maximized.
However, it turns out that minimizing the number of crossings is not so easy. For up to 27
points, an exact minimum is known. For more points, we know a lower bound on the crossing
number, but apart from the case of 30 points, we do not know a pointset that attains this
bound, see [3].

The main question in this thesis goes one step further. We are not asking for the total number
of crossings, but for the number of crossings that are in the same color class if we allow to
choose one of two colors for each line segment. Again, we see that maximizing is easy. All we
need to do is choose the same color for each line segment. So minimizing is the interesting task.
Before asking for how to choose a point set for a minimal number of same-colored crossing line
segments, we have to ask how to choose the colors. This problem is not trivial as well.
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1 Basic definitions and notations

1 Basic definitions and notations

First a remark concerning structural notation: In this thesis, for enumerated paragraphs with
title (such as Definition, Lemma, Theorem, etc.) a bar on the left side indicates their scope.

For a rigorous discussion of the problem of the number of monochromatic crossings in rectilinear
embeddings of complete graphs, we need some basic definitions first.

Notation 1.1. There are some notations that are not uniform throughout mathematical
literature. In this thesis, we will consistently use the following notations and symbols with
the meaning as given in Table 1.

N The set of positive integers N = {1, 2, . . .}. We will distinguish N from the set
of nonnegative integers N0 = {0, 1, 2, . . .}

A ∨B, For A and B Boolean variables or statements, A ∨B means A or B and
A ∧B means A and BA ∧B

S ⊂ T For S and T sets, S ⊂ T means S is a proper subset of T , i.e., S 6= T

S ⊆ T For S and T sets, S ⊆ T means S ⊂ T ∨ S = T .
S ∪̇T For S and disjoint T sets, i.e., S ∩ T = ∅, S ∪̇T denotes the union S ∪ T . For

non-disjoint sets, it is not defined. This notation emphasizes the disjointness
of S and T .

[a, b] The closed real interval {x ∈ R : a ≤ x ≤ b}
]a, b[ The open real interval {x ∈ R : a < x < b}
dxe, bxc For x ∈ R, dxe = min({a ∈ Z : x ≤ a} denotes the ceiling of x and bxc =

max({a ∈ Z : x ≥ a} denotes the floor of x.
idS The identity map on a set S. idS : S → S, s 7→ s

f |S′ If S and T are sets, f : S → T is a function, S ′ ⊆ S, then f |S′ is the map
S ′ → T defined by f |S′(s) = f(s) for all s ∈ S ′.

|S| For a set S, |S| ∈ N0∪{∞} denotes the number of elements of the set S, while
for z ∈ C, |z| denotes the absolute value of z.

P(S) For a set S, P(S) denotes the power set of S, i.e., the set of all subsets of S.(
S
k

)
For a set S and k ∈ N,

(
S
k

)
denotes the set of all k-element subsets of S, i.e.,(

S
k

)
= {S ′ ⊆ S such that |S ′| = k}. For |S| < ∞, this notation is consistent

with the binomial coefficient |
(
S
k

)
| =

(|S|
k

)
= |S|!

k!(|S|−k)!
.

P The complexity class of polynomially solvable combinatorial optimization or
decision problems.

NP The complexity class of non-deterministically polynomially solvable combina-
torial optimization or decision problems.
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1 Basic definitions and notations

O(f(x)) Landau notation: For a function f : D → R+ with D ∈ {R+,N}, the symbol
O(f(x)) describes the class of functions whose limiting behavior is bounded by
f up to a constant, i.e., O(f(x)) = {g : D→ R+ with ∃c ∈ R+ such that ∀x ∈
D : g(x)

f(x)
< c}. For full formal exactness, we should write, O(f) (without

variable), but plugging in a function, we allow the notation g(x) ∈ O(f(x))

instead of g ∈ O(f). In many books, the notation g(x) = O(f(x)) is used for
this property. We will not stick to this notation as the equality sign “=” will
be reserved for equality.

Table 1: Basic notations and symbols used in this thesis

Furthermore, we will give some basic definitions used in this thesis. Most of them are quite
common in graph theory and they are defined like in [29]

Definition 1.2 (Graph). As usual in graph theory, a graph is a pair (V,E) consisting of a
set V and a set E of two-element subsets of V . The set V is called the set of vertices and
E is called the set of edges. If |V | is finite, we call G a finite graph. In this thesis, we will
restrict our considerations to finite graphs and just call them graphs.

A vertex w ∈ V is called a neighbor of a vertex v ∈ V if {v, w} ∈ E. The set of neighbors
of a vertex v is denoted by Γ(v) = {w ∈ V : {v, w} ∈ E}.

If G′ = (V ′, E ′) is a graph with V ′ ⊆ V and E ′ ⊆ E, then G′ is called a subgraph of G. If
additionally it holds that ∀ e ∈ E : e ⊆ V ′ → e ∈ E ′, i.e., all edges of G with vertices in V ′

are also in G′, then G′ is called an induced subgraph of G.

A graph is called complete if E =
(
V
2

)
= {{u, v} : u, v ∈ V, u 6= v}. For k ∈ N, we will use

the notation Kk for the complete graph on k vertices V = {1, . . . , k}.

Two graphs G = (V,E) and G′ = (V ′, E ′) are called isomorphic if there exists a bijective
mapping ϕ : V → V ′ with the property that for all {u, v} ∈

(
V
2

)
it holds that {u, v} ∈ E

iff {ϕ(u), ϕ(v)} ∈ E ′.

Next, we declare colorings.

Definition 1.3 (coloring of a graph). Let G = (V,E) be a graph. For a ∈ N,

• an a-edge coloring of G is a mapping E → {1, . . . , a}.

• an a-vertex coloring of G is a mapping V → {1, . . . , a}.

• (even more general) an a-coloring of a set S is a mapping S → {1, . . . , a}.
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1 Basic definitions and notations

The numbers 1, . . . , a are called colors. The numbers are just labels. We could call the
colors also “red” or “blue” and so on.

An a-vertex coloring cV is called proper if ∀ e ∈ E : |cV (e)| = 2, i.e., every edge consists of
two differently colored vertices.

A graph G is called a-partite if there exists a proper a-vertex coloring of G. In the case
a = 2 we call this property bipartite.

Definition 1.4 (Rectilinear drawing of a graph). A rectilinear drawing of a graph G =

(V,E) is a map D : V → R2. The drawing of an edge e = {u, v} ∈ E is given by the set
D(e) = {αD(u) + (1 − α)D(v) such that α ∈ [0, 1]}. For our considerations of rectilinear
drawings in this thesis, we will restrict to those drawings, in which no three points in the
image of D lie on a common straight line, i.e., ∀u, v, w ∈ V , the vectors u − v and u − w
are linearly independent.

In this chapter, we will restrict our considerations to drawings of the complete graph. A short
discussion on the non-complete case is given in Section 9.2.

Definition 1.5 (Crossings of a rectilinear drawing of a graph). Let G = (V,E) be a
graph and D : V → R2 a rectilinear drawing of G. Two distinct edges e, f ∈ E cross
if D(e) ∩ D(f) \ D(V ) 6= ∅. In other words, two edges cross, if their corresponding line
segments have a proper crossing that is not one of the end points. We denote by Cr(G,D)

the set of all two-element subsets of the edge set that have crossing edges. If G is a complete
graph, we will omit G and write Cr(D) instead.

Cr(G,D) =

{
{e, f} ∈

(
E

2

)
: e, f cross

}
Let a ∈ N and cE : E → {1, . . . , a} be an a-edge coloring of G. Then we say that the edges
e, f cross mono-chromatically or e and f form a monochromatic crossing with respect to cE
if e and f cross and cE(e) = cE(f). We denote by CrM(G,D, cE) the set of all two-element
subsets of the edge set that consist of mono-chromatically crossing edges. Again, if G is
complete, we write CrM(D, cE) instead.

CrM(G,D, cE) =

{
{e, f} ∈

(
E

2

)
: e, f cross and cE(e) = cE(f)

}

Now we can define the monochromatic crossing number as the number of monochromatic cross-
ings
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1 Basic definitions and notations

0 1

2

3

Figure 1: rectilinear drawing of K4 in convex
position: one crossing

0 1

2

3

Figure 2: rectilinear drawing of K4 with a tri-
angular convex hull: no crossing

Definition 1.6 (monochromatic crossing number). Let a ∈ N, G = (V,E) be a graph and
D be a drawing of G. Then the a-crossing number of D, denoted cr(G,D, a), is defined by
the minimum number of monochromatic crossings of D among all a-edge colorings of G,
i.e.,

cr(G,D, a) = min
cE :E→{1,...,a}

|CrM(G,D, cE)|

As above, if G is complete, we write only cr(D, a).

The a-crossing number of G, denoted cr(G, a), is defined by the minimum number of
monochromatic crossings of any drawing of G.

cr(G, a) = min
D drawing of G

cr(G,D, a)

Having introduced these terms, we can present the main problem that will be discussed in this
thesis:

Problem 1.7. Given a rectilinear drawing D of a complete graph Kk for some k ∈ N.
Find a 2-edge coloring that minimizes the number of monochromatic crossings.

In other words, find a 2-edge coloring cE with |CrM(D, cE)| = cr(D, 2).

Example 1.8 (rectilinear drawings of the complete graph on four vertices).
A drawing of a complete graph on four vertices can be crossing free if the convex hull is
a triangle (see Figure 2) or can have one crossing (see Figure 1). In the figures, vertices
are enumerated starting with 0 and crossings are marked by small blue disks . Edges are
colored according to some 2-edge coloring in red or green. Edges that do not cross are not
drawn in color as they may be colored arbitrarily without changing the monochromatic
crossing number.
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1 Basic definitions and notations

0

1 2

3

4

Figure 3: rectilinear drawing
of K5 in convex position: five
crossings. For any 2-edge col-
oring there exists at least one
monochromatic crossing

0 1

23

4

Figure 4: rectilinear drawing
of K5 with four extreme ver-
tices: three crossings

0 1

2

3 4

Figure 5: rectilinear drawing
of K5 with three extreme ver-
tices: one crossing

Example 1.9 (rectilinear drawings of the complete graph on five vertices).
For the complete graph on five vertices we see that the rectilinear crossing number can
attain several different values, see Figures 3 to 5. If the five points lie in convex position,
the diagonals in the induced pentagon intersect like in Figure 3. Since the number of
diagonals is odd, we cannot color them alternately in a 2-edge coloring. Hence, any 2-edge
coloring of this drawing has at least one monochromatic crossing, marked by in Figure 3
.

Remark 1.10. In [2], it is shown that all drawings of K4 are essentially equal to one of
the drawings given in Figures 1 and 2 and all drawings of K5 are essentially equal to one
of the drawings given in Figures 3 to 5. The definition of the term esentially equal follows
in Definition 3.4 on page 13.
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2 Basic and geometric observations

2 Basic and geometric observations

Observation 2.1. In a rectilinear drawing, by definition it follows that:

1. An edge cannot cross itself.

2. Two distinct edges cross at most once.

3. Two edges that share a vertex cannot cross.

Observation 2.2 (Inverse approach). Let G = (V,E) be a graph and D a drawing of G.
As the drawing already determines the number of crossings, Problem 1.7 can be solved
maximizing the number of bichromatic crossings.

Observation 2.3 (Color number inequality). Let a, b ∈ N such that b ≥ a. Then any
coloring of a graph G = (V,E) with a colors is also a coloring of G with b colors (some
colors may not show up). That is the set of colorings {cE : E → {1, . . . , a}} is contained
in the set of colorings {cE : E → {1, . . . , b}}. By Definition 1.6 of the crossing number as
a minimum over all colorings, we have

∀D : V → R2 : cr(G,D, a) ≥ cr(G,D, b) and cr(G, a) ≥ cr(G, b)

In other words, if we are allowed to use more colors, the monochromatic crossing number
cannot increase.

Observation 2.4 (Subgraph inequality). Let G = (V,E) be a graph, G′ = (V ′, E ′) a
subgraph of G, D a drawing of G, cE an a-edge coloring of G for some a ∈ N and
cE′ = cE|E′ the coloring restricted to the subgraph G. Then Cr(G′,D) ⊆ Cr(G,D) and
CrM(G′,D, cE′) ⊆ CrM(G′,D, cE).

Minimizing the number of crossings over all colorings, we get:

cr(G′,D, a) ≤ cr(G,D, a)

Minimizing over all drawings of G yields:

cr(G′, a) ≤ cr(G, a)

In other words, in a subgraph there are at most as many (monochromatic) crossings as in
the whole graph.

So far, we do not have discussed how to find a “good” coloring, i.e., how to find a coloring
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2 Basic and geometric observations

that minimizes the number of monochromatic crossings. But the other direction is easy. Given
a graph G = (V,E) and a drawing D of G, any constant coloring cconst : E → {1, . . . , a}
with cconst(e) = c for all edges e ∈ E and some c ∈ {1, . . . , a} maximizes the number of
monochromatic crossings since every crossing is monochromatic. By this, we can find better
upper bounds for the number of monochromatic crossings by the Probabilistic Method (see
[11]).

Lemma 2.5 (Probabilistic upper bound). Let a ∈ N, G = (V,E) be a graph and D a
drawing of G. Let CE = {cE : E → {1, . . . , a}} be the set of all a-edge colorings of G.
We consider a probability space (CE,P(CE),P(CE)), where P is a probability measure on
P(CE), i.e., a map P(CE) → [0, 1] that is additive (i.e., P(A ∪ B) = P(A) + P(B) for
A,B ∈ P(CE) with A∩B = ∅) and P(CE) = 1. Then the minimal monochromatic crossing
number is bounded from above by the “average” monochromatic crossing number, i.e., the
expected number of monochromatic crossings.

cr(G,D, a) = min
cE∈CE

|CrM(G,D, cE)| ≤ E(|CrM(G,D, cE)|) =
∑
cE∈CE

P(cE) |CrM(G,D, cE)|

Choosing equidistribution P(cE) = P(c′E) for all cE, c′E ∈ CE, i.e., P(cE) = 1
|CE |

= 1
n|E|

,
we can give a more specific bound. In equidistribution, the colors of two different edges are
independent random variables, each of them being equidistributed among {1, . . . , a}. Hence,
the probability of two specific different edges having the same color is given by 1

a
. In this

case, the term E(|CrM(G,D, cE)|) simplifies to 1
a
|Cr(G,D)|. This yields the inequality:

cr(G,D, a) ≤ 1

a
|Cr(G,D)|

This inequality is only tight if all a-edge colorings of G have the same number of monochro-
matic crossings. If we find an a-edge coloring of G with more than 1

a
|Cr(G,D)| monochro-

matic crossings, which we do if |Cr(G,D)| ≥ 1, then the above inequality is strict.

Observation 2.6 (Crossing family lower bound). Let a < b ∈ N, G = (V,E) be a graph,
D a drawing of G, and {e1, e2, . . . , eb} ⊆ E a b-crossing family, i.e., a set of b edges that
pairwise cross. Then by the pigeonhole principle, there exist for any a-edge coloring cE
of G at least two different indices i, j ∈ {1, . . . , b} such that the corresponding crossing
edges are in the same color cE(ei) = cE(ej). In this case, we conclude cr(G,D, a) ≥ 1.

We can slightly improve this bound. Since in a crossing family edges pairwise cross, if ci
is the number of edges among {e1, e2, . . . , eb} having color i, we have

(
ci
2

)
monochromatic

crossings in color i. As this holds for all colors, we have Sa,b :=
∑a

i=1

(
ci
2

)
monochromatic

crossings with
∑a

i=1 ci = b. As the function x 7→
(
x
2

)
is a convex function, the minimum

7



2 Basic and geometric observations

of Sa,b over all colorings is taken if ci is equal to b
a
for all i due to Jensen inequality, see

[18]. So we have at least n
( b

a
2

)
=

a b
a( b

a
−1)

2
= b(b−a)

2a
monochromatic crossings.

As ci are integers, we can improve this in the following way: Let p ∈ N, q ∈ {0, . . . , a− 1}
such that pa + q = b. Then the minimum of Sa,b over all colorings is taken for ci = p + 1

for i ∈ {1, . . . , q} and ci = p for i ∈ {q+ 1, . . . , a}. So the bound reads q
(
p+1

2

)
+ (a− q)

(
p
2

)
.

As an example, an optimally 2-colored 5-crossing family is given in Figure 6, illustrating
that a 2-colored 5-crossing family has at least four monochromatic crossings. Although we
can guarantee by this a better bound for big crossing families, this bound is quite weak
compared to the bound given in Lemma 2.7 below because big crossing families are quite
rare in general.

By the subgraph inequality given in Observation 2.4, we conclude cr(G,D, a) ≥ l if we
find l pairwise disjoint a+ 1-crossing families in D. In fact, this inequality also works for l
a+ 1-crossing families f1, . . . fk if |fi ∩ fj| ≤ 1 for all i, j ∈ {1, . . . , l} with i 6= j, because as
in this case two of the mentioned a+ 1-crossing families have at most one edge in common,
the guaranteed monochromatic crossing is a different one for each of the a + 1-crossing
families.

Figure 6: A 2-coloring of a 5-crossing family has at least 4 monochromatic crossings.

Lemma 2.7 (Lifting crossing family bounds). Assume we have proven for some k, a ∈ N
that for any rectilinear drawing of Kk there exists an a+1-crossing family. Then for h ∈ N

8



2 Basic and geometric observations

with h ≥ k it holds that

cr(Kh, a) ≥
(
h
k

)(
h
k

)
− S0 − (a+ 1)S1

where

S0 =
a+1∑
j=0

2j
(
a+ 1

j

)(
h− 2a− 2

k − j

)
and

S1 =
a∑
j=0

2j
(
a

j

)(
h− 2a− 2

k − 2− j

)

Proof. Let D be a drawing of the complete graph Kh = (V,E). Since an induced subgraph of
a complete graph is complete, every set S ∈

(
V
k

)
induces a complete subgraph on k vertices,

whose sub-embedding D |S contains an a + 1 crossing family by assumption. There are
(
h
k

)
k-element subsets of the vertex set V . Fixing an a+ 1-crossing family F , we want to count the
number of k-element subsets of V containing at most one edge of F .

First we count the number of k-element subsets not containing an edge of F . Let j ∈ {0, . . . , a+

1} be the number of vertices of F contained in the chosen k-element subset. We may choose j
edges of F and for each chosen edge we may choose one of its two vertices. So there are 2j

(
a+1
j

)
ways to choose these vertices. Furthermore, there are

(
h−2a−2
k−j

)
ways to choose the vertices not

in F . In total, there are S0 =
∑a+1

j=0 2j
(
a+1
j

)(
h−2a−2
k−j

)
k-element subsets not containing an edge

of F .

Now we count the number of k-element subsets containing exactly one edge of F . For this,
we first choose one of a + 1 edges. For the rest of the vertices, we have to count the number
of (k−2)-element subsets not containing an edge of the crossing family that consists of F
without the removed edge. So index shifting of the formula in the first case gives the result:
S1 =

∑a
j=0 2j

(
a
j

)(
h−2a−2
k−2−j

)
.

Summing up, there are
(
h
k

)
− S0 − (a + 1)S1 k-element subsets of V containing at least two

edges of F . Hence, we may choose at least (h
k)

(h
k)−S0−(a+1)S1

many a + 1-crossing families that

pairwise have at most one edge in common, each of them resulting in a different monochromatic
crossing.

Remark 2.8 (Bounds for rectilinear drawings of small graphs).

1. In any rectilinear drawing of a graph G with four vertices, there can be at most one
crossing. This can be shown by some easy case distinction, see also [3].
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2 Basic and geometric observations

2. On the other hand, we deduce from Kuratowski’s theorem [22, 30] that the complete
graph on five vertices K5 is not planar, i.e., any rectilinear drawing of K5 has at least
one crossing (a 2-crossing family).

3. By analyzing all essentially equal rectilinear drawings, we see that there exists a
rectilinear drawing of K8 that has a 2-coloring without a monochromatic crossing,
see [5] and Figure 7.

4. By analyzing all essentially equal rectilinear drawings, we find out that in any recti-
linear drawing of K10 there exists a 3-crossing family (see [2]).

5. By extending the point sets of the data base on 11 points and case distinction, we
find out that in every rectilinear drawing of K15, there exists a 4-crossing family (see
[2]).

Corollary 2.9 (General bounds for rectilinear drawings). By 2.8 and 2.7 we can deduce
lower bounds on the monochromatic crossing numbers of rectilinear drawings of the com-
plete graph up to three colors. A table for up to 30 vertices is given in Table 2.

k a = 1 a = 2 a = 3

1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 1 0 0
6 3 0 0
7 7 0 0
8 14 0 0
9 26 0 0
10 42 1 0

k a = 1 a = 2 a = 3

11 66 1 0
12 99 2 0
13 143 2 0
14 201 3 0
15 273 3 1
16 364 4 1
17 476 5 1
18 612 6 2
19 776 7 2
20 969 9 2

k a = 1 a = 2 a = 3

21 1197 11 2
22 1463 13 2
23 1771 15 2
24 2126 18 3
25 2530 22 3
26 2990 25 3
27 3510 30 3
28 4095 34 4
29 4751 39 4
30 5481 45 5

Table 2: Lower bounds on the monochromatic crossing numbers of rectilinear drawings deduced
by Remark 2.8 and Lemma 2.7

In fact, there are much better bounds for the crossing number for rectilinear drawings with
a = 1 known, see [3].
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2 Basic and geometric observations

Figure 7: A 2-edge colored rectilinear drawing of K8 without a monochromatic crossing (Figure
taken from [5])

11



3 The crossing Graph

3 The crossing Graph

It is quite hard to see further geometric properties of a drawing of a graph. One approach is
to reformulate Problem 1.7 into an equivalent one.

Definition 3.1 (crossing graph). Let G = (V,E) be a graph and D be a drawing of G.
Then the crossing graph, denoted by ×(G,D) = (V×, E×), is defined to be the graph with
vertex set V× = E, and edge set E× = {{e, f} ∈

(
E
2

)
: e and f cross}.

Lemma 3.2 (Basic properties of the crossing graph). Let G = (V,E) be a graph , D a
rectilinear drawing of G and ×(G,D) = (V×, E×) the crossing graph of D. Then

1. |V×| = |E|

2. For edges e, f ∈ E that share a vertex, we have {e, f} 6∈ E×

3. A tuple of four vertices can induce at most one crossing. Hence, for t, u, v, w ∈ V with
{{t, u}, {v, w}} ∈ E×, it holds that {{t, v}, {u,w}} 6∈ E× and {{t, w}, {u, v}} 6∈ E×

4. |E×| ≤
(|V |

4

)
5. If G is a complete graph, we have |E×| ≥ 1

5

(|V |
4

)
. In fact, much better bounds are

known.

Proof. 1. This is clear by the definition of the crossing graph.

2. This directly follows by the definition of the crossing graph, see Definition 3.1, and the
property of D being a rectilinear drawing.

3. This follows from Remark 2.8 and Definition 3.1

4. This follows directly from 3. There are
(
k
4

)
four-element subsets of V , each of them induces

at most one crossing.

5. This follows from the lifted two-crossing family lower bound (see Lemma 2.7) for k = 5,
a = 1 and h = |V |.

Observation 3.3 (Number of crossing graphs). Let G = (V,E) be a graph. In any drawing
D, for every two-element subset {e, f} ∈

(
E
2

)
, the edges e and f cross or they don’t cross.

In other words, for every two vertices of the crossing graph, they are connected by an edge
or not. Hence, we observe that there are at most 2(|V×|2 ) = 2(|E|2 ) crossing graphs of G. In
fact, we can derive a better bound from Lemma 3.2, Property 3. Since for any four points,

12



3 The crossing Graph

there are only three possibilities for a crossing and one for no crossing, there are at most
4(|V |4 ) different crossing graphs.

Since there are infinitely (even uncountably) many rectilinear drawings of a graph G, we want
to identify those drawings which have the “same” crossings, i.e., which lead to the same or an
isomorphic crossing graph.

Definition 3.4 (Essentially equal and essentially different drawings). Let G = (V,E) be a
graph and D1 and D2 two drawings of G. D1 and D2 are called essentially equal, denoted by
D1 ∼ D2, if there exists a graph automorphism ϕ : G→ G, i.e., a bijective map ϕ : V → V

with the property ∀ u, v ∈ V : {u, v} ∈ E ↔ {ϕ(u), ϕ(v)} ∈ E, such that for all edges
e, f ∈ E it holds that e and f cross with respect to the drawing D1 iff ϕ(e) and ϕ(f) cross
with respect to the the drawing D2.

In other words, two drawings are essentially equal if after a possible relabeling of the
vertices, the crossing graphs of those drawings coincide.

Observation 3.5 (Partition into finitely many essentially equal drawing classes). Let G =

(V,E) be a graph. Obviously, the relation ∼ on drawings of G is an equivalence relation.
By Observation 3.3, there are only finitely many equivalence classes. We write G∼ for the
set of classes of essentially equal drawings {[D]∼| D rectilinear drawing of G}.

By definition, if two drawings D1 and D2 are essentially equal, then their crossing graphs
×(G,D1) and ×(G,D2) are isomorphic. Hence, minimizing over all drawings for a given
graph can be considered as a finite and thus combinatorial optimization problem and can
be done operating on the crossing graph.

Lemma 3.6. Problem 1.7 can be solved by solving the following combinatorial optimization
problem:

Problem 3.7 (Minimum vertex coloring problem on the crossing graph). Given×(D) =

(V×, E×) the crossing graph of a rectilinear drawing of a complete graph. Find a 2-
vertex coloring that minimizes the number of edges whose vertices have the same color.
We will call those edges monochromatic edges.

min
cE× is a 2-coloring of E×

∣∣{{e, f} ∈ E× : cE×(e) = cE×(f)}
∣∣

Proof. By definition, the crossing graph translates crossings in the drawing D into edges in the
crossing graph G×. The property of a crossing to be monochromatic translates to the property

13



3 The crossing Graph

of edges to be monochromatic in the crossing graph if we just carry over the coloring from the
edge set of the graph to the vertex set of the crossing graph.

Lemma 3.8. Problem 1.7 can polynomially be reduced to Problem 3.7.

Proof. As the coloring of the crossing graph carries over to the drawing canonically, it suffices
to show that we can construct the crossing graph in polynomial time. Given k points in the
plane in general position, we have to check for every choice of four points if there are two line
segments that cross. We have already seen that there can be at most one crossing within four
points t = (t1, t2), u = (u1, u2), v = (v1, v2), w = (w1, w2) in the plane, i.e., there is exactly
one crossing if they lie in convex position and there is no crossing if they do not lie in convex
position. We can assume that a test if two line segments {αt+βu : α, β ∈ [0, 1], α+β = 1} and
{γv+ δw : γ, δ ∈ [0, 1], γ+ δ = 1} intersect can be done in constant time. Either one solves the
linear equation system or, even easier, one checks if the orientation of the vectors t − u, t − v
and t − u, t − w as well as those of v − w, v − t and v − w, v − u are equal, i.e., it suffices to
evaluate the sign of four 2 × 2 determinants. Actually, this is equivalent to two conditions on
3× 3 determinants: ∣∣∣∣∣∣∣

t1 u1 v1

t2 u2 v2

1 1 1

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣
t1 u1 w1

t2 u2 w2

1 1 1

∣∣∣∣∣∣∣ < 0

∣∣∣∣∣∣∣
v1 w1 t1

v2 w2 t2

1 1 1

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣∣
v1 w1 u1

v2 w2 u2

1 1 1

∣∣∣∣∣∣∣ < 0

Performing
(
k
4

)
∈ O(k4) times a constant time operation leads to a complexity of O(k4), which

is polynomial.

The benefit of the problem formulation in Problem 3.7 is, that we can use methods and theorems
from graph theory to tackle the problem. The downside of this approach is that the geometry
of the embedding, which is implicit by the construction of the crossing graph, is not directly
visible.

Lemma 3.9. Problem 3.7 is equivalent to the maximal bipartite subgraph problem on cross-
ing graphs.

14



3 The crossing Graph

Problem 3.10 (Maximal bipartite subgraph problem). Given a graph G = (V,E).
Find a maximal bipartite subgraph of G, i.e., find a graph G′ = (V ′, E ′) with the
following properties:

1. V ′ = V

2. E ′ ⊆ E

3. G′ is bipartite.

4. |E ′| is maximal among all graphs G′ = (V ′, E ′) satisfying properties 1, 2 and 3.

Proof. First consider an instance of Problem 3.7 on a graph G = (V,E) (not necessarily a
crossing graph). Let G′ = (V ′, E ′) be a maximal bipartite subgraph of G. Then by breath first
search (see e.g. [29], pages 71 ff), we can find a proper 2-vertex coloring cV ′ of G′. Since G′ is a
maximal bipartite subgraph, the number of removed edges E \E ′, that do not necessarily have
differently colored end vertices, is minimal. Hence, all edges in E \ E ′ are monochromatic. So
cV is a 2-vertex coloring of G that minimizes the number of monochromatic edges.

Conversely, consider a graph G = (V,E) as an instance of Problem 3.10. Let cV be a 2-vertex
coloring of G that minimizes the number of monochromatic edges. Let Ē = {{u, v} ∈ E :

cV (u) = cV (v)} be the set of monochromatic edges. Then G′ = (V,E \ Ē) is a bipartite
subgraph since by construction, cV is a proper 2-vertex coloring of G′. Since |Ē| is minimal,
|E \ Ē| is maximal. Hence, G′ is a maximal bipartite subgraph of G.

Remark 3.11. For general graphs, Problem 3.10 is NP-hard, see [13].

But the decision problem, if a graph is bipartite can be solved in polynomial time using
breath first search. This gives hope that we can deduce reasonable heuristics.

Furthermore, we have the characterization that a graph G is bipartite iff it does not contain
an odd cycle, i.e., iff for every odd u ≥ 3, no subgraph of G is isomorphic to Cu =

({1, . . . , u}, {{1, 2}, {2, 3}, . . . , {u− 1, u}, {u, 1}}) due to Kőnig, see [23].

Remark 3.12. Because we only want to find a 2-vertex coloring, we can omit all singletons,
i.e., all vertices that do not have neighbors in the crossing graph. These vertices correspond
to edges in the drawing that do not cross another edge. They can be colored arbitrarily
not changing the monochromatic crossing number.

Furthermore, all vertices in the crossing graph that have only one edge correspond to edges
in the drawing that cross exactly once. If the rest of the graph is colored, there is a unique

15



3 The crossing Graph

way to color them avoiding a monochromatic crossing, i.e., color them in the other color
than the crossing edge. So for Problem 1.7, we can iteratively remove all the edges that
cross at most one edge for our consideration. This translates to Problem 3.7 as to consider
only the 2-core of the crossing graph, i.e., the graph that remains from the crossing graph
after iteratively removing vertices with degree (number of neighbors) smaller than 2. This is
also consistent with Problem 3.10, because vertices with degree at most one cannot appear
in odd cycles.

16



4 Equivalence to an integer linear program

4 Equivalence to an integer linear program

For a graph G = (V,E), we formulate Problem 3.10 (and analogously Problem 3.7) as an integer
linear program. Let G′ = (V ′, E ′) be a maximal bipartite subgraph of G and cV a proper 2-
vertex coloring on G′. For each edge e = {u, v} ∈ E, we introduce a variable ae ∈ {0, 1}, that
indicates if the edge e is in the subgraph G′ (or equivalently, if cV (u) 6= cV (v)) or not. For
technical reasons, it is useful to define

ae =

0 if e ∈ E ′

1 if e 6∈ E ′

Then, as an objective function, we want to minimize
∑

e∈E ae.

It remains to translate the constraint, that the resulting graph G′ = (V,E ′) with E ′ = {e ∈
E : ae = 0} is bipartite. For this, recall the characterization from Remark 3.11. In order to
obtain a subgraph G′ from G that is bipartite, we need to remove from each odd cycle in G at
least one edge. Let Codd(G) be the set of odd cycles in G, i.e., the set of all subgraphs of G, for
which there exists a u ≥ 3 odd, such that they are isomorphic to Cu as defined in Remark 3.11.
For some C ∈ Codd(G), we denote by V (C) the vertex set of C and by E(C) the edge set of C.
Then the linear program, that is equivalent to Problems 3.7 and 3.10 reads like

Problem 4.1 (Integer linear program formulation). Given a graph G = (V,E). Find
(ae)e∈E ∈ {0, 1}E so that each odd cycle C ∈ Codd(G) contains an edge eC ∈ E(C) such
that aeC = 1 and the sum

∑
e∈E ae is minimized with this property.

Written as formula:

min
∑
e∈E

ae s.t. ∀C ∈ Codd(G) :
∑

e∈E(C)

ae ≥ 1 and ae ∈ {0, 1} ∀ e ∈ E

As Problems 3.7 and 3.10 are NP-hard, Problem 4.1 also is. But if we drop the condition that
ae ∈ {0, 1} ∀ e ∈ E and replace it by xe ∈ [0, 1] ∀ e ∈ E, we end up with a (continuous) linear
program:

Problem 4.2 (LP-relaxation of Problem 4.1). Given a graph G = (V,E). Find (xe)e∈E ∈
[0, 1]E so that for each odd cycle C ∈ Codd(G) the sum of edge weights

∑
eC∈E(C) xeC is at

least one and the sum
∑

e∈E xe is minimized with this property.
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4 Equivalence to an integer linear program

Written as formula:

min
∑
e∈E

xe s.t. ∀C ∈ Codd(G) :
∑

e∈E(C)

xe ≥ 1 and xe ∈ [0, 1] ∀ e ∈ E

A downside of Problems 4.1 and 4.2 is that the number of constraints, which is | Codd(G)| is in
general exponential in the number of edges of G. M. Innerkofler [17] came up with a different
formulation of Problems 3.7 and 3.10 as an integer linear program. As above, we introduce for
each edge a variable be ∈ {0, 1} that will be 1 if e is monochromatic and 0 if e is bichromatic. So
the objective function to be minimized is again

∑
e∈E ae. Furthermore, we introduce a variable

cv ∈ {0, 1} for each vertex v ∈ V , that indicates the color. We now need to find constraints that
guarantee that be = 1 if e = {u, v} is a monochromatic edge. We observe, that e is bi-chromatic
iff cu + cv = 1 and monochromatic iff if cu + cv ∈ {0, 2}. So the constraint cu + cv − 1 ≤ be and
−cu − cv + 1 ≤ be guarantee be = 1 for monochromatic edges. For bi-chromatic edges, we have
be = 0 in an optimal solution.

So the problem reads as follows:

Problem 4.3 (Integer linear program formulation due to M. Innerkofler).

min
∑
e∈E

be s.t. ∀ e = {u, v} ∈ E : cu + cv − 1 ≤ be

∀ e = {u, v} ∈ E : −cu − cv + 1 ≤ be

∀ e ∈ E : be ∈ {0, 1}
∀ v ∈ V : cv ∈ {0, 1}

This problem can be relaxed to a linear program as well:

Problem 4.4 (LP-relaxation of Problem 4.3).

min
∑
e∈E

ye s.t. ∀ e = {u, v} ∈ E : zu + zv − 1 ≤ ye

∀ e = {u, v} ∈ E : −zu − zv + 1 ≤ ye

∀ e ∈ E : ye ∈ [0, 1]

∀ v ∈ V : zv ∈ [0, 1]

Observation 4.5 (Properties of the integer program and the LP-relaxation).

1. Since [0, 1]E is a bounded set, Problems 4.1 to 4.4 are bounded (integer) linear pro-
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4 Equivalence to an integer linear program

grams. Because ae = 1∀ e ∈ E is a feasible solution for Problem 4.1, xe = 1∀ e ∈ E
is a feasible solution for Problem 4.2, be = 1∀ e ∈ E, cv ∈ {0, 1} arbitrary ∀ v ∈ V is
a feasible solution for Problem 4.3 and ye = 1 ∀ e ∈ E, zv ∈ [0, 1] arbitrary ∀ v ∈ V
is a feasible solution for Problem 4.4, for all those problems there exists an optimal
solution.

Let G = (V,E) be a graph, let (ae)e∈E ∈ {0, 1}E be an optimal solution of Problem 4.1
with objective function value A, (xe)e∈E ∈ [0, 1]E an optimal solution of Problem 4.2 with
objective function value X, (be)e∈E ∈ {0, 1}E together with (cv)v∈V ∈ {0, 1}V an optimal
solution of Problem 4.3 with objective function value B and (ye)e∈E ∈ [0, 1]E together with
(zv)v∈V ∈ [0, 1]V an optimal solution of Problem 4.4 with objective function value Y . Then

2. The linear programs Problem 4.1 and Problem 4.3 are equivalent, hence A = B.
But their relaxations Problem 4.2 and Problem 4.4 are not equivalent in general. In
Problem 4.2 we allow that edges are “fractionally” removed from the graph to obtain
a bipartite subgraph. In Problem 4.4, we allow vertices to be “fractionally” colored.

3. Since {0, 1}E ⊆ [0, 1]E and {0, 1}V ⊆ [0, 1]V , we obtain X ≤ A and Y ≤ B. So solving
Problem 4.2 or Problem 4.4 gives a lower bound for the solution of Problems 4.1
and 4.3.

4. For Problem 4.4, zv = 1
2
∈ {0, 1}∀ v ∈ V and ye = 0∀ e ∈ E is a feasible solution with

objective function value 0. Hence, this solution is also optimal and we have Y = 0.
So the LP-relaxed Problem 4.4 gives only a trivial lower bound for the solution of
Problem 4.3.

5. Since A is integral, i.e., A ∈ N0, also dXe ≤ A is a lower bound for the solution of
Problem 4.1.

6. Since (dxee)e∈E ∈ {0, 1}E is a feasible solution to Problem 4.1,
∑

e∈Edxee ≥ A is
an upper bound for the solution of Problem 4.1. Moreover, by the equivalence of
Problems 3.7, 3.10 and 4.1, we can deduce a proper 2-coloring of G from (dxee)e∈E.
However, this upper bound is not very strong in general.

7. We do not know any general approximation ratio by LP-relaxation. However, in
praxis, this method works quite good, as we will discuss in Section 8.

Remark 4.6 (Techniques to solve an integer linear program). There are several techniques
to directly solve an integer linear program including cutting planes method, Lagrange
relaxing and Branch and Bound method. You can look them up in [21], pages 129 ff.
These techniques either lead to an exact approach with exponential running time or a
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4 Equivalence to an integer linear program

heuristic without an approximation ratio in general. We will not discuss these techniques
here.
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5 Solving the linear program

5 Solving the linear program

As we have seen that the lower bound obtained form Problem 4.4 is trivial, we want to find a way
to solve Problem 4.2 in polynomial time hoping that the obtained bound is better. The number
of variables in Problems 4.1 and 4.2 is |E|, which is polynomial in the input. But the number
of constraints in the above formulations is | Codd(G)|, which is in general exponential in the
input. Hence, we cannot use a standard method like the Simplex Algorithm [9] or Karmarkar’s
Algorithm [20] to solve Problem 4.2 efficiently. But by the Ellipsoid Method, there is a way of
solving a linear program with exponentially many constraints given a polynomial oracle that
can find an unsatisfied constraint in an infeasible solution or decide that a solution is feasible.
The Ellipsoid Method used to be the first polynomial algorithm to solve linear programs and
was first described by N. Z. Shor and L. Khachiyan in 1972. In this thesis, we reference to a
simplified an more readable version of the Ellipsoid Method, see [28].

For this, we refine the problem described in [28] by an ε-estimation before we describe how to
apply this method to Problem 4.2:

Problem 5.1 (Polytope element problem). Given a “precision parameter” ε > 0 and a set
of m ∈ N liner inequalities in n ∈ N variables, described by Ax ≤ B where A ∈ Rm×n is the
system matrix, B ∈ Rm is the right hand side vector and the inequality is read index-wise,
such that the polytope S = {x ∈ Rn : Ax ≤ B} is either empty or bounded. Task: Find
some x ∈ S or decide Vol(S) < ε, where Vol(S) is the volume of S, i.e., the n-dimensional
Lebesgue measure of S.

Now we reduce Problem 5.1 to Problem 4.2. This step is dependent on the specific structure
of Problem 4.2 and not described by [28].

Lemma 5.2. If we can solve Problem 5.1 with a complexity that is polynomial in n and
in log(1

ε
), then we can polynomially solve Problem 4.2.

Proof. As in a linear program, the objective function f : Rn → R is linear, it can be described
as f(x) = f((x1, . . . , xn)>) = α>x = α1x1 + . . .+αnxn for some vector α ∈ Rn. So the objective
function can be used as a constraint in a decision problem: For a number c ∈ R, the linear
program min f(x) s.t. Ax ≤ b has a feasible solution x̄ ∈ Rn with f(x̄) ≤ c iff

x̄ ∈ S(c) :=

{
x ∈ Rn :

(
A

α>

)
x ≤

(
B

c

)}
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5 Solving the linear program

So the set S(c), the set of all vectors x satisfying the constraints Ax ≤ b that have objective
function value at least c, is a polytope.

In Problem 4.2, the matrix A consists of interval restrictions xi ≤ 1 and −xi ≤ 0 for i ∈
{1, . . . , n} and odd cycle restrictions −

∑
xj∈E(C) xj ≤ −1 for C ∈ Codd(G). Without loss of

generality, we can assume that the first 2n rows of A and B consist of the interval restrictions
and all other rows are odd cycle restrictions. Then the top n×n sub-matrix of A is the identity
matrix, and all other entries of A are ∈ {0,−1}. The first n entries in the vector B are 1,
the next n entries are 0 and all others are −1. We have αi = 1 for all i ∈ {1, . . . , n}, so
f(x) =

∑n
i=1 xi.

Let x∗ ∈ S be an optimal solution and c∗ be the optimal objective function value for Problem 4.2.
We observe the following properties:

1. The n-dimensional vector that is one in every entry is feasible for Problem 4.2. So the
set S is not empty.

2. For c ∈ R, S(c) = S ∩ {x ∈ Rn : f(x) ≤ c}

3. For c̄ ≤ d̄, we have S(c̄) ⊆ S(d̄)

4. For x ∈ S, y ∈ [0, 1]n with y ≥ x component-wise, we have y ∈ S.

5. S = S(c) for c ≥ n.

6. S(c) = ∅ for c < c∗.

7. S(c) 6= ∅ for c ≥ c∗.

8. There exists an optimal solution x̃∗ ∈ Qn with denominator at most n!. Especially, c∗ is
rational and its denominator is bounded by n!. Let I ⊆ {1, . . . , n} be the set of indices
with x̃∗i = 1 for all i ∈ I and J = {1, . . . , n}\I the set of indices with x̃∗j < 1 for all j ∈ J .
Then maxj∈J xj ≤ 1− 1

n!
.

9. Let x(γ) = x̃∗ + γy, where y is the vector which is −1 on indices in I and 1 for indices
in J . Then for every 0 < γ < min(1

3
, 1
n!

), x(γ) ∈ S(c∗ + nγ).

10. Vol(S(c∗ + ε)) ≥
(
ε

2n

)n for all 0 < ε < min( 1
3n
, 1
n·n!

)

From Property 10 it follows that we can find the optimal objective function value by a binary
search method in polynomial time since by property 8, c∗ ∈ Q = {0 ≤ p

q
≤ n : p ∈ N0, q ∈

N, q ≤ n!}, and log(|Q|) ≤ log(n(n!)2) ≤ log(n) + 2n log(n) is polynomial in n. For each value
q ∈ Q we can determine by Problem 5.1 if S(q) has positive volume (and hence c∗ < q) or not
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(then c∗ ≥ q). Because distinct elements Q have distance at least 1
(n!)2

, choosing the “precision

parameter” ε =
(

1
2n(n!)2

)n
suffices.

Now we want to prove those properties:

Properties 1 to 6 are clear by definition and construction.

Property 7: This is clear because f(x∗) = c∗.

Property 8: In a bounded linear program, there exists a corner where the optimal function
value is taken. This corner is an intersection of n hyperplanes, where constrains are satisfied
with equality. Hence, this corner is a solution of a linear equation system, where the system
matrix A′ is a sub-matrix of A, which is a rational matrix. As the entries of A are −1, 0,
or 1, the determinant of A′, which appears in the denominator by Carmer’s rule, is at most
|
∑

σ∈Sn sgn(σ)
∏n

i=1 a
′
i,σ(i)| ≤

∑
σ∈Sn 1 ≤ n!.

Property 9: First we show x(γ) ∈ [0, 1]n. For i ∈ I, 0 < x(γ)i = 1− γ < 1 by assumption. For
j ∈ J , 0 ≤ x̃∗j < x(γ)i = x̃∗j + γ < 1− 1

n!
+ 1

n!
= 1.

Now we have to show that the cycle bounds are satisfied for x(γ). Let C ∈ Codd(G) with edge
indices k1, . . . , ku. If at least two indices are in I, then

∑u
l=1 x(γ)kl ≥ 2(1− 1

3
) = 4

3
> 1. If there

is at most one index among k1, . . . , ku in I, then
∑u

l=1 x(γ)kl ≥
∑u

l=1 x̃
∗
kl

+ γ((n− 1)− 1) ≥ 1

provided n ≥ 2, which is the only interesting case.

It remains to show f(γ(x)) ≤ c∗ + nγ. This is clear by definition: f(γ(x)) =
∑n

i=1 γ(x)i =∑
i∈I(x̃

∗
i − γ) +

∑
j∈J(x̃∗j + γ) ≤

∑n
i=1 x̃

∗
i + nγ.

Property 10: By Property 9, x̄ := x( ε
2n

) ∈ S(c∗ + ε
2
) and by construction x̄i ∈ [ ε

2n
, 1 − ε

2n
] for

all i ∈ {1, . . . , n}. By Property 4, the set X = {x̄+ y : y ∈ [0, ε
2n

]n} is a subset of S. We show
that even X ⊆ S(c∗ + ε). Let x ∈ X. Then there exists a y ∈ [0, 1]n with yi ≤ ε

2n
such that

x = x̄ + y. Hence f(x) = f(x̄ + y) = f(x̄) + f(y) ≤ c∗ + ε
2

+
∑n

i=1 yi ≤ c∗ + ε
2

+ n ε
2n

= c∗ + ε.
Since X is a cube with side length ε

2n
, Vol(S(c∗ + ε)) ≥ Vol(X) =

(
ε

2n

)n.
Now we discuss the Ellipsoid Method, which is an algorithm to solve Problem 5.1, see also
[28].

Algorithm 5.3 (Ellipsoid Method). The Ellipsoid Method constructs a sequence of ellip-
soids (E0, E1, . . . , El) with center points x0, . . . , xl with the following properties:

1. For every k ∈ {0, . . . , l} the feasible set S is contained in Ek.

2. There exists a constant factor c ∈ [0, 1[ only depending on n such that Vol(Ek) ≤
cVol(Ek−1) for k ∈ {1, . . . , l}
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5 Solving the linear program

A step that constructs from an ellipsoid Ek−1 the next one Ek is visualized in Figure 8 on
page 25.

For a sequence like this, we know that Vol(Ek) ≤ ck Vol(E0). So if k > l := log(ε)−log(Vol(E0))
log(c)

,
we have Vol(Ek) < ε. So after l steps, we can terminate the algorithm with the answer
“Vol(S) < ε”. Now we have to describe how to construct (E0, E1, . . . , El).

First of all, we have to find an initial ellipsoid E0. Let’s assume we can find that in
polynomial time with log(Vol(E0)) is polynomial in n.

Next, we have to describe how to construct Ek from Ek−1. Assume without loss of generality,
that Ek−1 is the unit sphere. We can reach this by an affine linear transformation. If the
midpoint xk is in S, we finish returning xk. Otherwise, we assume that we can find in
time polynomial in n an unsatisfied constraint, i.e., an index j ∈ {1, . . . ,m} such that
Aj,·x > Bj. Without loss of generality, assume this constraint states x1 > δ for some
δ > 0. Since (transformed) S is convex, we know that (transformed) S is contained in the
half-ellipsoid H = {x ∈ Rn : x1 > 0, ‖x‖ ≤ 1}. By careful consideration, one finds out that
the ellipsoid

Ek =

{
x ∈ Rn :

1

(d− 1)2
(x1 − d)2 +

1− 2d

(1− d)2

(
n∑
i=2

x2
i

)
≤ 1

}

contains {x ∈ Rn : x1 > 0, ‖x‖ ≤ 1} for d ∈]0, 1
2
[. Choosing d = 1

n+1
, we have

Vol(Ek)

Vol(Ek−1)
=

n

n+ 1

(
n2

n2 − 1

)n−1
2

< exp

(
− 1

2(n+ 1)

)
=: c

For more details, see [28]. In pseudocode, this algorithm reads as follows:

1: Choose the initial ellipsoid E0 ⊇ S with midpoint x0.
2: Let l = 2(n+ 1) (log(Vol(E0))− log(ε)).
3: for k ∈ {1, . . . , l} do
4: if xk−1 ∈ S then
5: return xk−1

6: else
7: Find unsatisfied constraint Aj,·x > Bj

8: Construct Ek with mitpoint xk containing Ek−1 ∩ {x ∈ Rn : Aj,·x > Bj}.

9: return “Vol(S) < ε”.

In fact, Ellipsoids do not have to be constructed explicitly. Every step takes O(n3) time.

For applying Algorithm 5.3 to Problem 4.2, we have to find an initial ellipsoid that contains
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5 Solving the linear program

−1 1

−1

1

0

Ek−1

Ek

H

Figure 8: Step from Ek−1 to Ek in two dimensions: Because we found the unsatisfied constraint
x1 > 0 that describes the gray shaded half-plane, the set S is contained in the dark gray shaded
area H, which is the intersection of Ek−1 and the gray shaded half-plane. The ellipsoid Ek

contains H and its volume is smaller than the volume of Ek−1 by a factor bounded by c.
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5 Solving the linear program

all feasible solutions if feasible solutions exist. Since xe ∈ [0, 1], we can choose the ball with

midpoint 1
2
in all coordinates and radius

√
|E|
2

. Because the volume of an n-dimensional unit ball

is
√
π
n

Γ(1+n
2

)
(see [10]), where Γ denotes the gamma function, its volume is bounded by

(√
|E|π

)|E|
.

So the logarithm of the volume is bounded by |E|
2

(log(|E|) + log(π)) ∈ O(|E| log(|E|)).

Furthermore, we need to find an unsatisfied constraint (pseudocode line 7), which in this case
is an odd cycle C ∈ Codd(G) with

∑
eC∈E(C) xeC < 1, or decide that all constraints are satisfied

within polynomial time.

We first describe this problem in a more general notation:

Problem 5.4 (Finding an unsatisfied odd cycle in a graph). Given a graph G = (V,E)

and a weight function w : E → [0, 1]. Task: Find an odd cycle

C = ({v1, . . . , vu}, {{v1, v2}, . . . , {vu−1, vu}, {vu, v1}}) ∈ Codd(G)

with sum of edge weights w(C) :=
∑

e∈E(C) w(e) =
∑u−1

i=1 w({vi, vi+1}) +w({vu, v1}) < 1 or
decide that such an odd cycle does not exist.

Now we are giving an algorithm to solve this problem:

Algorithm 5.5 (Solving Problem 5.4). We can solve Problem 5.4 performing the following
steps:

1: Evaluate G2 = (V,E2) where

E2 =

{
{u, v} ∈

(
V

2

)
: ∃t ∈ V {u, t}, {t, v} ∈ E

}
and

w2 :
E2 → R
{u, v} 7→ min

t∈V : {u,t},{t,v}∈E
w({u, t}) + w({t, v})

For e2 = {u, v} ∈ E2 letm(e2) = t for a vertex t with w({u, t})+w({t, v}) = w2({u, v}).

2: Evaluate the weighted all pairs shortest paths matrix D ∈ RV×V in the graph G2 with
weight function w2. For u, v ∈ V let P (u, v) be the weighted shortest path between u
and v in G2. Let P ′(u, v) be the path in G obtained from P (u, v) by replacing each
edge e = {x, y} by {x,m(e)}, {m(e), y}.

3: for e = {u, v} ∈ E do
4: if w(e) +Du,v < 1 then
5: return “Unsatisfied odd cycle: (V (P ′(u, v)), E(P ′(u, v)) ∪ {e})”
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5 Solving the linear program

6: return “All odd cycles are satisfied”.

The idea behind this method is that every odd cycle is a union of an edge {u, v} and a
path from u to v containing an even number of edges. Finding shortest paths in the square
graph G2 corresponds to finding shortest paths containing an even number of edges in G.
As it suffices to find one unsatisfied cycle, it suffices to restrict to search for shortest paths.

Remark 5.6 (Including the binary search method in the Ellipsoid Method). When we have
found an ellipsoid Ek with midpoint xk such that f(xk) ≤ c, we can start the Ellipsoid
Method for E(c′) with c′ < c with Ek because by Property 3 in the proof of Lemma 5.2,
we have E(c′) ⊆ E(c). However, if we chose c′ < c∗, we have to run the full Algorithm 5.3
until Vol(Ek) < ε to decide this.

Concluding, we give a complexity analysis of the above method to solve Problem 4.2.

Lemma 5.7 (Complexity of solving Problem 4.2 with the Ellipsoid Method). With the
above method, Problem 4.2 is solved within time complexity O(|E|4(|E|3 + |V |3) log(|E|)2).

Proof. For simpler notation, let |V | = n and |E| = m.

As c∗ ∈ Q = {0 ≤ p
q
≤ m : q ≤ m!}, the binary search method on Q takes at most log2(|Q|) ≤

log2(m(m!)2) ≤ log2(m2m+1) = (2m+ 1) log2(m) ∈ O(m log(m)) steps.

In each step, we apply the Ellipsoid Method constructing not more than l = (2m+1)(log(Vol(E0))−
log(ε)) ellipsoids. We have log(Vol(E0)) ≤ log

(
(
√
mπ)

m)
= m

2
(log(m)+log(π)) ∈ O(m log(m)).

Setting ε =
(

1
2m(m!)2

)m
as in the proof of Lemma 5.2, we have − log(ε) = log(1

ε
) = m(log(2) +

log(m) + 2 log(m!)) ≤ m(log(2) + log(m) + 2 log(mm)) ∈ O(m2 log(m)). So in total, l ∈
(2(m+ 1))O(m log(m)) +O(m2 log(m)) = O(m3 log(m)).

Every step of the Ellipsoid Method takes O(m3) effort to update the ellipsoid after finding an
unsatisfied constraint. So it remains to analyze Algorithm 5.5:

Line 1 can be done in O(n3) steps iterating over every triple u, v, t ∈ V .
Line 2 can be done by the Floyd-Warshall-Algorithmus (see [29], pages 177 ff) in O(n3) time.
We do not have to save all paths explicitly because parts of shortest paths are shortest paths
as well. So it suffices to save for every pair u, v ∈ V the predecessor of v in a shortest u-v-path.

The test in line 4 takes constant time and is repeated O(m) times.
Within the algorithm, line 5 can only be run once. In this case, we have to evaluate P ′(u, v).
By repeatedly evaluating the predecessors, we get the path P (u, v). Inserting m(a, b) for a, b
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5 Solving the linear program

all neighbors a and b in P (u, v), we get P ′(u, v). Since the length of this path is bounded by
the number of vertices, this can be done in O(n) time.

Summing up, the complexity of Algorithm 5.5 is O(n3) + O(n3) + O(m) + O(n). Since in a
graph m ≤

(
n
2

)
∈ O(n2), this is O(n3) in total. This is in dense graphs less than the complexity

of the ellipsoid updating step, which is O(m3).

So for Problem 4.2, we get a complexity of O(m log(m)) · O(m3 log(m)) · (O(m3) + O(n3)) =

O(m4(m3 + n3) log(m)2)

Remark 5.8. We have seen in Lemma 3.2, Property 5 that crossing graphs of rectilinear
drawings of complete graphs are dense, i.e., |E| ∈ Θ(|V |2). This not yet introduced Landau
notation stands for a both-sided estimation, i.e., |E| ∈ O(|V |2) and |V |2 ∈ O(|E|). So the
complexity of Problem 4.2 is O(|E|7 log(|E|)2) in this case.

All in all, this method is more of theoretical interest, but hard to implement in praxis because
the Ellipsoid method is numerically quite instable.
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6 Upper bound by local optimization, gadget heuristics

In this chapter, we discuss how to find upper bounds for the monochromatic crossing number
cr(G,D, 2) for a graph G = (V,E) and a drawing D of G. In contrast to Section 5, we are not
only evaluating a bound b but will also give a 2-edge coloring cE : E → {0, 1} that admits b,
i.e., |CrM(G,D, cE)| = b.

Because Problem 1.7 can be reduced to Problem 3.7, we can alternately discuss the problem
on the crossing graph G×. In this way of looking at it, the 2-edge coloring cE corresponds to a
2-vertex coloring of G×. So we can use properties of the crossing graph.

Observation 6.1 (Every coloring yields an upper bound). Let G = (V,E) be a graph, D
a rectilinear drawing of G and cE : E → {0, 1} a 2-edge coloring of G. Then, by definition,
|CrM(G,D, cE)| ≥ cr(G,D, 2). So any 2-edge coloring of G yields an upper bound to
cr(G,D, 2).

Observation 6.2 (Quality of the bound for complete graphs). By Remark 2.8, we know
that for any rectilinear drawing of K10 there exists an 3-crossing family. So setting a = 2

and k = 10 in Lemma 2.7, we get for h ∈ {10, 11, . . .}:

cr(Kh, 2) ≥
(
h
10

)(
h
10

)
−
(∑3

j=0 2j
(

3
j

)(
h−6
10−j

))
− 3

(∑2
j=0 2j

(
2
j

)(
h−6
8−j

))
=

(h− 1)(h− 2)(h− 3)(h− 4)(h− 5)

15120 (h− 9)
=: A(h)

For any 2-edge coloring cE and any drawingD ofKh we have |CrM(Kh,D, cE)| ≤ |Cr(Kh,D)| ≤(
h
4

)
due to Lemma 3.2, Property 5. So the approximation ratio is

|CrM(Kh,D, cE)|
cr(Kh, 2)

≤
(
h
4

)
A(h)

=
630 (h− 9)h

(h− 4)(h− 5)

=630
h2 − 9h

h2 − 9h+ 20
= 630

(
1− 20

(h− 4)(h− 5)

)
≤630

This implies, that coloring the edges ofKh arbitrarily is a 630-approximation of Problem 1.7
for every h ∈ {10, 11, . . .}.

In order to find colorings with low monochromatic crossing number, we can do local optimiza-
tion.
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6 Upper bound by local optimization, gadget heuristics

Heuristic 6.3 (Local optimization of the coloring). For a graph G = (V,E), a rectilinear
drawing of D of G and some bound r ∈ N, the canonical local optimization heuristic for
finding a 2-edge coloring of G is given by:

1: Initialise an arbitary or random coloring cE : E → {0, 1}.
2: for j ∈ {1, . . . , r} do
3: for S ∈

(
E
j

)
do

4: Let c′E(e) =

1− cE(e) if e ∈ S

cE(e) if e 6∈ S
5: if |CrM(G,D, c′E)| < |CrM(G,D, cE)| then
6: Replace cE by c′E.
7: Go to line 2
8: return cE

Observation 6.4 (Properties of local optimization).

1. The resulting coloring cE is r-optimal, i.e, for every subset S of E with |E| ≤ r,
changing the coloring on S does not improve the monochromatic crossing number.
Since cE is 1-optimal, every edge e ∈ E crosses at least as many differently colored
edges than edges in the same color. Hence, it satisfies the Probabilistic bound from
Lemma 2.5. Especially, we have |CrM(Kh,D, cE)| ≤ 1

2

(
h
4

)
. Analogously to Observa-

tion 6.2, we find that Heuristic 6.3 is a 315-approximation on rectilinear drawings of
complete graphs with h ≥ 10.

2. The initialization in line 1 can be done in O(|E|) time. Whenever line 7 is reached,
the coloring cE was improved by at least one. Hence, we execute line 7 at most
|
(
E
2

)
| ∈ O(|E|2) times. In the for loops in lines 2 and 3, the set S is assigned∑r

j=1

(|E|
j

)
∈ O(|E|r) many times. In a direct implementation, lines 4 and 5 can be

done in O(
(|E|

2

)
) = O(|E|2) time. This gives an overall running time for Heuristic 6.3

of O(|E|2)O(|E|r)O(|E|2) = O(|E|r+4), which is exponential in r.

3. If c∗E is an optimal 2-edge coloring of D, then 1 − c∗E, the coloring obtained from c∗E
by flipping all colors, also is. Let cE, c′E be 2-edge colorings. Denote by diff(cE, c

′
E) =

{e ∈ E : cE(e) 6= c′E(e)}. Since for any 2-edge coloring cE we have diff(cE, c
∗
E) ∪̇ diff(cE, 1−

c∗E) = E, we obtain diff(cE, c
∗
E) ≤

⌊
|E|
2

⌋
or diff(cE, 1− c∗E) ≤

⌊
|E|
2

⌋
. So for r ≥

⌊
|E|
2

⌋
the coloring cE obtained by Heuristic 6.3 is optimal.

4. In praxis, we obtain better colorings performing Heuristic 6.3 if we do lines 6 and 7
not only for a strict inequality in line 5, but also with probability 1

2
if the inequal-
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6 Upper bound by local optimization, gadget heuristics

ity is sharp. Instead of only terminating when reaching line 8, we also terminate
after a previously defined number of iterations in which no improvement was made.
Otherwise we do not know any bound on the running time for the modified heuristic.

We can improve Heuristic 6.3 a little bit. In the following, we will analyze some improvements
on the crossing graph G×. All that changes in the formulation of Heuristic 6.3 is that edges
will be replaced by vertices and crossings will be replaced by edges.

Remark 6.5 (Improving check). The coloring c′E in Heuristic 6.3, line 4 and the number
of monochromatic crossings (edges) in line 5 do not have to be evaluated explicitly. We
can instead evaluate lines 4 and 5 in the following way:

Let G = (V,E) be a graph (e.g. a crossing graph), cV a 2-vertex coloring and G′ = (V ′, E ′)

an induced subgraph of G. For e = {v, w} ∈ E we define:

IIcV (e) :=

1 if cV (v) 6= cV (w)

−1 if cV (v) = cV (w)

For v ∈ V ′ we define:

g(G′, cV , v) :=
∑

w∈ΓG′ (v)

IIcV ({v, w})

= |{w ∈ ΓG′(V ) : cV (v) 6= cV (w)}| − |{w ∈ ΓG′(V ) : cV (v) = cV (w)}|

Furthermore, we define

G(G′, cV ) :=
∑
v∈G′

g(G′, cV , v) = 2
∑
e∈E′

IIcV (e)

=2(|{e ∈ E ′ : e bichromatic}| − |{e ∈ E ′ : e monochromatic}|)

So for two 2-vertex colorings cV and c′V of G, we have less monochromatic edges in G′

with respect to c′V than with respect to cV iff G(G′, c′V ) > G(G′, cV ). More precisely, the
difference in the number of monochromatic edges is 1

4
(G(G′, c′V )− G(G′, cV )).

Let G′ be the subgraph of G induced by S. Since the coloring c′V defined in line 4 differs
from the coloring cV exactly on the set S, we can evaluate if G has less monochromatic
edges with respect to c′V than to cV by the following:

G(G, c′V ) > G(G, cV ) ⇔∑
e∈E

IIc′V (e) >
∑
e∈E

IIcV (e) ⇔
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6 Upper bound by local optimization, gadget heuristics

0 >


∑
{u,v}∈E
u,v∈S

+2
∑
{u,v}∈E
u∈S
v∈V \S

+
∑
{u,v}∈E
u,v∈V \S

(IIcV ({u, v})− IIc′V ({u, v})
)

⇔

0 >
∑
{u,v}∈E
u∈S
v∈V \S

IIcV ({u, v}) ⇔ (1)

0 >
∑
{u,v}∈E
u∈S
v∈V \S

IIcV ({u, v}) + 2
∑
e∈E′

IIcV (e)− G(G′, cV ) ⇔

G(G′, cV ) >
∑
v∈S

g(G, cV , v) (2)

To check line 5 of Heuristic 6.3, it suffices to check (2). For the initial coloring in line 1,
the vector g = (g(G, cV , v))v∈V can be evaluated in O(|E|) = O(|V |2) time since every
edge contributes to exactly two vertices. Lines 4 and 5 then take O(r2) time for each
iteration. In line 6, we have to update g. This can again be done in O(|E|) time. Since
an update is only done if the new coloring has fewer monochromatic edges, we perform
line 6 only O(|E|) times. So we are left with an overall running time for Heuristic 6.3
of O(|V |2)O(|V |r)O(r2) = O(|V |r+2r2).

In line 5 we are searching for a set S ∈
(
E
j

)
if switching the colors in S improves the coloring

given that every smaller set S ′ ∈
(
E
j′

)
with j′ < j does not have this property. We show that

such a set S must have a specific structure:

Lemma 6.6 (Improving subsets are uniquely colored). Let G = (V,E) be a graph and
cV a 2-vertex coloring. A set S ∈

(
E
j

)
as chosen in Heuristic 6.3, line 3 can only give a

true statement in line 5 if the by S induced subgraph G′ = (S,E ′) has a unique minimal
2-coloring (up to switching all colors). This coloring is attained by cV |S.

Proof. Let’s assume S gives a true statement in Heuristic 6.3, line 5, i.e., it satisfies (1) and
there exists a 2-coloring c∗S of S with c∗S 6= cV |S and c∗S 6= 1− cV |S that minimizes the number
of monochromatic edges in G′. Let M = {v ∈ S : cV (v) = c∗S(v)}. Then M 6= S and M 6= ∅.
Because of the assumption that S is minimal, we have∑

{u,v}∈E
u∈M
v∈V \M

IIcV ({u, v}) ≥ 0 and
∑
{u,v}∈E
u∈S\M

v∈V \(S\M)

IIcV ({u, v}) ≥ 0

Since V \M = (V \ S) ∪̇(S \M), V \ (S \M) = (V \ S) ∪̇M and S = M ∪̇(S \M), adding
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6 Upper bound by local optimization, gadget heuristics

those two inequalities and adding (1) gives∑
{u,v}∈E
u∈M
v∈S\M

IIcV ({u, v}) > 0 ⇔ G(G′, cV |S) > G(G′, c∗S(v))

This means that G′ has less monochromatic edges with respect to cV than with respect to c∗S(v).
This contradicts the optimality of c∗S(v). So if S satisfies line 5, such a coloring c∗S(v) cannot
exist. Hence, cV |S is (up to switching all colors) the unique minimal coloring of S.

However, the set of graphs with the property in Lemma 6.6 is exponential in the number of
vertices, as it is obviously a superset of the set of connected bipartite graphs. Anyway, the
subgraph isomorphism problem, i.e., the problem to decide if a graph G′ is a subgraph of a
graph G is NP-hard, see [7]. Hence, the problem to find all subgraphs of a graph isomorphic
to a certain graph is hard as well.
There is no further restriction known that reduces the effort for Heuristic 6.3 significantly. So
there is not a lot of hope to be able to transform it into a polynomial time algorithm.
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7 Equivalence to Max-Cut

Another equivalent problem to Problems 1.7, 3.7 and 3.10 on the crossing graph is given
by:

Problem 7.1 (Maximum cut problem). Given a graph G = (V,E). Task: Find a bipar-
tition V = A ∪̇B such that the number of edges that connect vertices in A with vertices
in B, i.e, the cardinality of the set {{a, b} ∈ E : a ∈ A, b ∈ B} is maximized.

Proof of the equivalence. Let V = A ∪̇B be a bipartition. Then this bipartition induces a
2-vertex coloring:

cV (v) =

1 if v ∈ A

0 if v ∈ B

On the other hand, any 2-vertex coloring cV : V → {0, 1} defines a bipartition A = {v ∈ V :

cV (v) = 1}, B = {v ∈ V : cV (v) = 0} of the vertex set.

By a coloring or a bipartition of the vertex set, we partition the edge set into the set of
monochromatic edges

E1 = {e ∈ E : e ∈ A2 ∨ e ∈ B2} = {{u, v} ∈ E : cV (u) = cV (v)}

and the set of bichromatic edges

E2 = {{a, b} ∈ E : a ∈ A, b ∈ B} = {{u, v} ∈ E : cV (u) 6= cV (v)}

Since E = E1 ∪̇E2, we have |E| = |E1|+ |E2|. So maximizing |E2| is equivalent to minimizing
|E1|.

By equivalence to an NP-hard problem, Problem 7.1 is also NP-hard for general graphs. How-
ever, Problem 7.1 is solvable in polynomial time for planar graphs by translating into a maxi-
mum weighted matching problem, see [16].

One might wonder if geometric properties in the drawing carry over to the crossing graph
such that we can adapt the algorithm solving Max-Cut in polynomial time to crossing graphs.
However, in [6] it was shown that on crossing graphs of rectilinear drawings of non necessarily
complete graphs, Problem 7.1 still is NP-hard.

Nevertheless, one can still apply algorithms that find a maximum cut to solve Problem 1.7.
Some of these are given in [14, 15]. For general graphs, their worst case running time is
exponential. It is not known, if this also holds for crossing graphs of rectilinear drawings of
complete graphs.
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8 Results for order types of small cardinality

Observation 8.1 (Comparison of bounds). Let G = (V,E) be a graph and D a rectilinear
drawing of G. In Section 5, we have developed a method to find a lower bound L(G,D)

such that L(G,D) ≤ |CrM(G,D, cE)| for every 2-edge coloring cE of G. If we find a 2-edge
coloring c∗E with L(G,D) = |CrM(G,D, c∗E)|, then c∗E is optimal, i.e., it solves Problem 1.7.

By Observation 8.1, we get a sufficient criterion for a 2-edge coloring to solve Problem 1.7. This
leads to the idea to solve Problem 1.7 by a two way algorithm: On one hand we try to obtain a
coloring cE with few monochromatic crossings by Local Search (see Section 6) and on the other
hand evaluating lower bounds by LP-relaxation (see Section 5) we can check if cE is already
optimal. If the check is positive, we are done. If the check is negative, we have to try to improve
either the coloring or the lower bound. In pseudocode, this reads as follows:

Algorithm 8.2 (Comparing bounds algorithm).

1: Evaluate a lower bound L(G,D) by the Ellipsoid method.
2: repeat
3: repeat
4: Evaluate a coloring cE by Local Optimization.
5: until L(G,D) = |CrM(G,D, cE)| or a cretain bound on the number of computations

or some timeout is reached.
6: if L(G,D) = |CrM(G,D, cE)| then
7: return cE

8: Investigate more on the lower bound by methods mentioned in Remark 4.6 to obtain
a new bound L′ ≥ L that is at least as good as the old one.

9: Replace L by L′.
10: if L(G,D) = |CrM(G,D, cE)| then
11: return cE

12: until some return statement is reached.

As neither Local Search nor the lower bound method in Remark 4.6 are polynomial in general,
Algorithm 8.2 is not supposed to be polynomial either. But there is hope, that for many
drawings D we do not have to apply an exact method with exponential running time to find
out the 2-crossing number of D, but finish by finding a coloring that attains the lower bound.
In fact, it turns out that for most rectilinear drawings of small complete graphs, a slightly
adapted version of this approach yields good results.

For investigations on the crossing number of rectilinear drawings, O. Aichholzer generated a
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database containing a representative for each class of essentially equal rectilinear drawings (see
Definition 3.4) of the complete graph. A representative is given by an 8-bit or a 16-bit integer
coordinate representation on the order type homepage, see [1].

The problem to obtain a representative of every class of essentially equal rectilinear drawings
is not trivial. It was solved by transforming the line arrangement based on some point set by
a duality approach into a pseudoline arrangement. It is shown that every rectilinear drawing
corresponds to some extension of a smaller pseudoline arrangement. But on the other hand, it
takes a lot of effort to decide if a certain pseudoline arrangement can be realized as an order
type, i.e., a drawing. For more details see [4].

The number of essentially equal rectilinear drawing classes of the complete graph grows rapidly
with the number of points, see Table 3.

n 3 4 5 6 7 8 9 10 11
|(Kn)∼| 1 2 3 16 135 3 315 158 817 14 309 574 2 334 512 907

Table 3: Number of order types for the complete graph up to 11 vertices.

For this thesis we analyze the rectilinear 2-edge coloring crossing number, i.e., solve Problem 1.7
for all rectilinear drawings D (called “order types” in [4]) of small complete graphs. For this
thesis, we stop at ten vertices because we don’t have enough computational power to apply the
approach to eleven vertices as well.

Approach 8.3 (Applying Algorithm 8.2). Due do practical and implementation reasons,
we apply an adapted version of Algorithm 8.2:

1. First evaluate a coloring using Heuristic 6.3 with r = 2 in the variant given in Obser-
vation 6.4, property 4 several times and pick a best sample cE.

2. Because of numerical instability and bad running time for practical purposes, we
did not implement the Ellipsoid method for evaluating the lower bound, but used
the GLPK solver (see [24]) that comes with the computer algebra system sage (see
[27]). For this, we solved the linear program LPi only containing constraints for odd
cycles of length at most i for i ∈ {3, 5, 7} and compared it with |CrM(Kk,D, cE)|.
If the bound coincides with the number of monochromatic crossings in the coloring,
we are done. Otherwise, we iteratively add constraints for unsatisfied cycles like in
Algorithm 5.5.

3. Continue on using Heuristic 6.3 with r = 3 and r = 4 several times. If we find a
coloring cE that attains the previously evaluated lower bound, we are done.
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4. Solve the integer linear program ILPi only containing constraints for odd cycles of
length at most i for i ∈ {5, 7} with GLPK. Check after each solved ILP if removing
all edges e ∈ E× with ae = 1 in the solution of the ILP from the crossing graph
G× yields a bipartite graph. If so, reconstruct an optimal coloring. Otherwise add
constraints for unsatisfied cycles like described in Algorithm 5.5.

Remark 8.4 (Implementation of the algorithm). The computations were done via the
Python based software package Sage, see also [27]. The source code of both evaluating
the lower bound by the linear program and the upper bound by local optimization are
published online as a sage worksheet, see [12].

Observation 8.5 (Behavior of Approach 8.3).

1. The bound obtained from LP3 is quite weak. For at least seven points, in most
instances, this bound was not tight. This is not very surprising because five points
in convex position generate a 5-cycle in the crossing graph but no 3-cycles.

2. Nevertheless, the bound obtained from LP5 works fine for a lot of instances. Even
for 12 vertices, in a test with 1000 randomly generated pointsets the LP5 solution
agrees with some coloring found by Heuristic 6.3 repeating it for 20 random initial
colorings and r = 3 in all but two, which gives 99.8% of the cases. However, Local
Search might get stuck in quite bad local optima. There exist 3-optimal solutions
that have over 20 more monochromatic crossings than optimal ones. An example is
given in the appendix in Section 11.2. For more details see [12]

3. Among all drawings of 10 points, there however exist instances where the LP7 bound
is strictly better than the LP5 bound.

4. Properties of the LP-bound:

(a) For all pointsets with at most 6 points, the LP-bound is tight.

(b) For 7 points, there exists exactly one drawing where the bound is not tight. This
is the case if they lie in convex position.

(c) For 8 points there is also exactly one instance where the LP-bound is not tight.
This is given for 7 points v1, . . . , v7 in convex positon, and one point is added
where the straight line segments from v8 to v1, . . . , v7 do not cross any other line
semgent, see Figure 9.

(d) For nine points, there are 11 drawings and for ten points, there are 965 drawings
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where the LP bound is not tight.

5. There might be hope that according to the structure of the crossing graph of a recti-
linear drawing of a complete graph, only certain subgraphs that satisfy the condition
in Lemma 6.6 eventually appear using Heuristic 6.3. However, all of these subgraphs,
that are also called “gadgets”, for r ≤ 4 and most of them for r ≤ 6 were used during a
test of Heuristic 6.3 on all graphs on 10 vertices where the LP-bound is not tight. So
there is little hope that Heuristic 6.3 can be converted to a polynomial time approach.

v1

v2

v3

v4

v5

v6

v7

v8

Figure 9: Rectilinear drawing of K8 with LP-bound 8.4, which is not integral and hence cannot
be tight.

To find the monochromatic crossing number cr(K10,D, 2) for every drawing D of K10, it took
more than 3000 CPU hours with the Sage implementation in [12] on a standard desktop com-
puter. Although the approach is polynomial on each instance, the computational effort grows
rapidly with the number of points because the number of order types, i.e., the number of essen-
tially equal rectilinear drawing classes, is exponential in the number of points. So within the
available computational power, it was not possible to continue with cr(K11,D, 2) for all draw-
ings D of K11, because evaluating the lower bound solving LP5 requires a lot of computational
effort.

However, it was possible to determine cr(K11, 2) = 10 using Observation 2.4: It suffices to
evaluate a lower bound ≥ 10 for all those rectilinear drawings where every subset of ten points
has a lower bound of at most 9 to show that the the minimal number of monochromatic
crossings over all drawings is 10. Analyzing the database, O. Aichholzer found out, that only
24410 rectilinear drawings have this property. See [12] for the check that all these drawings D
have cr(K11,D, 2) ≥ 10. For a summary of the monochromatic crossing numbers, see Table 4.
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k ≤ 8 9 10 11
| cr(Kk,D, 2) 0 2 5 10

Table 4: 2-colored monochromatic crossing number for the complete graph up to 11 vertices.

9 Generalizations and related problems

9.1 More colors

One obvious generalization of Problem 1.7 is to allow more than two colors. Then the problem
reads as follows:

Problem 9.1. Given a rectilinear drawing D of a complete graph Kk for some k ∈ N and
a number a ∈ N. Find an a-edge coloring that minimizes the number of monochromatic
crossings.

In other words, find an a-edge coloring cE with |CrM(D, cE)| = cr(D, a).

For Problem 9.1, Observations 2.1 to 2.4 and 2.6 and Lemmas 2.5 and 2.7 still apply, since they
do not depend on the restriction that the number of available colors is two.

Problem 9.1 can be still translated into a problem on the crossing graph. Analogously to
Problem 3.7, we see that Problem 9.1 is equivalent to the following problem:

Problem 9.2 (Minimum vertex coloring problem on the crossing graph). Given ×(D) =

(V×, E×) the crossing graph of a rectilinear drawing of a complete graph. Find an a-vertex
coloring that minimizes the number of monochromatic edges.

min
cE× is an a-coloring of E×

∣∣{{e, f} ∈ E× : cE×(e) = cE×(f)}
∣∣

But when it comes to Section 4, the above approach cannot be translated for this problem,
because here we used the characterization that a graph is bipartite iff it does not contain an
odd cycle, see [23] and [21], Proposition 2.27 on page 38. Such a characterization does not exist
for a-partite graphs. Moreover, the decision problem if a given graph is a-partite is NP-hard,
see [29], page 84. Hence, Sections 5 and 8 also do not apply for this problem. An adapted
version of Heuristic 6.3 can be used. Instead of just changing the color, one has to check for
all possibilities of different colors if an improvement is possible. When it comes to Section 6,
Observation 6.1 still holds, but we lose Observation 6.2. Lemma 6.6 does not generalize on
more than two colors.
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9.2 Non-complete graphs

Another quite obvious generalization is to allow general graphs instead of complete graphs only.
It is shown that in the general setting, the problem is NP-complete, see Section 7 and [6].

In Observations 2.6, 6.2 and 8.5, Lemma 2.7, and Corollary 2.9, as well as in Lemma 3.2,
property 5, we use the property that the given graph is complete. All other approaches directly
carry over to the non-complete case.

9.3 Minimizing over drawings

Given a graph G, it might also be interesting not only to minimize over all colorings cE of a
given drawing D of a graph, but also minimizing over all drawings {D drawing of G}. This
leads to the following problem:

Problem 9.3. Given a graph G. The task is to find a drawing D and an 2-edge coloring
that minimizes the number of monochromatic crossings.

In other words, find a 2-edge coloring cE and a drawing D with cr(G, 2) = |CrM(G,D, cE)|.

For G = Kk with k ∈ {1, . . . , 11}, this problem is solved, see Table 4. In general, a valid,
but exponential time approach that solves this problem is to evaluate cr(G,D, 2) for every
rectilinear drawing D of G as we did in Section 8. This is very hard as it is even hard to
determine all drawings for a given k ∈ N. Moreover, we can use Observation 2.4 if information
on the crossing numbers of subgraphs is available.

One can also apply a local search heuristic on the set of dawings of G by e.g. vertex flips, i.e.,
shifting vertices across lines in the complete line arrangement induced by the points. However,
we do not know anything about the performance of this heuristic. We even do not know if
minimal colorings of drawings that only differ by one vertex that is shifted to the other side of
a line has any structure in common with the unshifted one.

In general, there is little hope to find an efficient algorithm that solves Problem 9.3.

9.4 Non-rectilinear drawings

One more assumption we can omit is that we draw the graph in the plane rectilinearly. For
this, we must generalize the term “drawing” to the non-rectilinear case.
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Definition 9.4 (Drawing of a graph). Let G = (V,E) be a graph. A drawing of a graph
into a topological space T is a pair of a map ι : V → T and a family of continuous maps
(ιe : [0, 1]→ T )e∈E with the property that ιe({0, 1}) = ι(e) and ιe(]0, 1[) ∩ ι(V ) = ∅ for all
e ∈ E.

It is reasonable to assume that ι is an injective map.

The rectilinear case is covered by this definition choosing T = R2 and any ιe for e = {u, v} is
the line segment between the drawn end points ι(u) and ι(v), i.e., ιe(α) = αι(u) + (1− α)ι(v)

for α ∈ [0, 1], given that the vertices u, v are sorted in some (e.g. lexicographical) order.

In this more general case we have to declare what crossing means. This is not as simple as
in the rectilinear case, because a lot of special cases, e.g. tangenital arcs, self-intersections
or singular points can occur. In the literature, there are several non-equivalent definitions of
crossings for general drawings. As an example, we will consider the following definition of
crossings.

Definition 9.5 (Crossings of a drawing of a graph). Let G = (V,E) be a graph and
I = (ι, (ιe)e∈E) a drawing of G into a topological space T . A crossing of I (or loosely
speaking of G if the applied drawing is clear) is an intersection of drawn edges, i.e., a
crossing is a two-element set of the form C = {(ιe, te), (ιf , tf )} where e, f ∈ E such that
ιe(te) = ιf (tf ) with te, tf ∈]0, 1[. In this case we say that the edges e and f cross, C is
called a crossing of e and f and the point P = ιe(te) ∈ T is called a crossing point of the
edges e and f .

The crossing graph of such a general drawing is not necessarily a simple graph, if we take
multiple crossings of pairs of edges into account. For this, we define: A multi-graph is a graph
where edges have a multiplicity, i.e., there is a function mlt : E → N ∪ {∞} where mlt(e) is
called the multiplicity of the edge e.

A coloring of edges carries over to a coloring of the drawing and to the corresponding coloring
of the crossing graph in a canonical way.

Definition 9.6 (coloring of embeddings and crossings). Let G = (V,E) be a graph and
cE : E → {1, . . . , a} an a-edge coloring for some a ∈ N. I = (ι, (ιe)e∈E) be a drawing
of G into a topological space T . Then we transmit the edge-coloring of G to a coloring
of {ιe : e ∈ E} by cE(ιe) = cE(e). A crossing C = {(ιe, te), (ιf , tf )} is called monochromatic
if cE(ιe) = cE(ιf ). In this case, we define the color of the crossing C by cE(C) = cE(ιe). We
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denote by Cr(I) the set of all crossings of I, by CrM(I, cE) the set of all monochromatic
crossings of I for the coloring cE.

We generalize the terms of crossing numbers:

Definition 9.7 (crossing number). Let G = (V,E) be a graph and I = (ι, (ιe)e∈E) be an
embedding of G into a topological space T . Then the a-crossing number of I, denoted
cr(I, a), is defined by the minimum number of monochromatic crossings of I among all
a-edge colorings of G, i.e.,

cr(I, a) = min
cE :E→{1,...,a}

|CrM(I, cE)|

The a-crossing number of G, denoted cr(G, a), (with respect to a topology T ) is defined by
the minimum number of monochromatic crossings of any embedding J into T .

cr(G, a) = cr(G, a, T ) = min
J embedding of G into T

cr(J, a)

In the general formulation, it is hard to draw any relevant consequences. But there are some
special cases which still can be interesting. Remaining with T = R2 and restricting to simple
drawings will give an interesting problem that is quite related.

Definition 9.8 (simple drawings). Let G = (V,E) be a graph. A drawing I = (ι, (ιe)e∈E)

of G into R2 where (ιe)e∈E are Jordan curves, i.e., regular and continuously differentiable
curves, is called simple if it satisfies the conditions from Observation 2.1 and every crossing
is non-degenerated, i.e., the crossing curves are not tangential.

One might wonder, if among all drawings, monochromatic crossing minimizing drawings are
simple. However, this is not evident, and still an open problem. But one can show a much
weaker statement: Let G = (V,E) be a graph, I = (ι, (ιe)e∈E) a drawing of G in R2 and cE

an a-edge coloring of G such that cr(G, a) = |CrM(I, cE)|. Then the induced sub-drawings
(ι, (ιe)e∈Ej

) for Ej = {e ∈ E : cE(e) = j} for j ∈ {1, . . . , a} are simple drawings. The indirect
proof of this can be done for each color class analogously to the proof for the uncolored problem,
which you can find in [2].

An interesting matter of fact is that simple drawings with less than nine vertices behave like
rectilinear drawings, i.e., every crossing graph of a simple drawing of at most eight points
appears also as a crossing graph of a rectilinear drawing. When we consider graphs with nine
or more points, this is not true any more because of Pappus’s hexagon theorem, named after
the ancient Greek mathematician Pappus of Alexandria [8].
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Hence, Properties 1, 2 and 3 in Remark 2.8 carry over to simple drawings.

But the minimal monochromatic crossing number for simple drawings of K9 is strictly smaller
than the rectilinear one, see Figure 10.

Figure 10: Within simple drawings, K9 can be drawn with only one monochromatic crossing.
(Figure taken from [5])

Of course, one can also investigate what happens for different topologies than R2. In this case,
the set of possible drawings strongly depends on the topology. For example, for some topologies
(e.g. R3) every graph can be drawn crossing-free. The less restrictions the topology gives on
the crossing behavior of the graph, the harder the problem will get in general. By NP-hardness
of the maximal bipartite subgraph problem, this problem is expected to be NP-hard in those
topologies.
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10 Conclusion

Within this thesis, Problem 1.7 (see page 4) could neither be classified to be polynomially
solvable nor to be NP-hard. However, we reformulated the problem as a special case of the
maximum bipartite subgraph problem on the crossing graph, see Problem 3.10 on page 15, and
as a special case of the Max-Cut problem, see Problem 7.1 on page 34. Furthermore, we gave
two formulations of Problem 1.7 as an integer linear program, see Problems 4.1 and 4.3 on
pages 17 and 18. The first formulation gave us a useful LP-relaxation, see Problem 4.2 on page
17. The issue that the problem has exponentially many constraints in general can be overcome
by the use of the Ellipsoid Method, see Algorithm 5.3 on page 23.

From an approximation point of view, we showed that already a trivial algorithm provides a
630-approximation for instances with at least 10 vertices, see Observation 6.1 on page 29, so we
classified the problem into the complexity class of combinatorial optimization problems with a
constant approximation factor, usually denoted as APX. As the local optimization heuristics
given in Heuristic 6.3 on page 30 behaves much better in practical approaches, we conjecture
that there is room for improvement on the approximation factor.

Finally, we compared the local optimization heuristics with the bound obtained from LP-
relaxation on small instances. With the above methods, we managed to evaluate the exact
solution of Problem 1.7 on all essentially different drawings with up to ten points, see Ob-
servation 8.5 on page 37. In the majority of the cases, the upper and the lower bound agree
proving the exactness of the solution. However, in some few cases, an exact solution approach
was necessary. Moreover, we found out that any drawing of eleven points needs at least ten
monochromatic crossings.

For further approach, it would be interesting to classify Problem 1.7, either to be polynomially
solvable or to be NP-hard. If this is not successful, or if Problem 1.7 turns out to be NP-hard,
it might be interesting to find better approximation algorithms or prove better bounds on the
local optimization approach.
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11 Appendix

11 Appendix

11.1 Gadgets up to five vertices

In the following, we give a list of all gadgets with up to five vertices, i.e., of all graphs that are up
to inverting all colors uniquely 2-vertex-colorable such that the number of monochromatic edges
is minimized. Although we are interested in unlabeled graphs, we will, for better describability,
give an arbitrary labeling of the graph. The graphs are given on one hand by a figure (vertices
drawn as circles with color red or green) and edges as line segments between the circles. On the
other hand, the graphs are given in G6-Notation, i.e. a printable code of ASCII symbols where
the first symbol characterizes the number of vertices in the graph and the following characters
describe six bits of the upper triangular part of the adjacent matrix each. For more details on
the G6-Notation see [25].

These graphs have been generated by enumerating all labeled connected graphs, picking a
representative in every isomorphism class and choosing only those that satisfy the property in
Lemma 6.6. The graphs are sorted lexicographically by their G6-Notation.
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11.2 Example for a pointset with bad local optima in the gadgets
heuristics

We consider the rectilinear drawingD ofK12 given by the coordinates in Table 5. An illustration
of the drawing is given in Figure 11. The edges that have at most one crossing and are removed
from the crossing graph for our considerations, as they can always be colored such that they do
not induce a monochromatic crossing. The adjacency matrix of the crossing graph G× of D, i.e.
its 2-cores, is illustrated in Figure 12: The vertices are sorted by ascending degree. A dot in a
square “ ” symbolizes an edge (a “1” in the matrix) while a square without a dot “ ” symbolizes a
non-edge (a “0” in the matrix). The colors of the squares and dots in the illustration correspond
to the colors of the vertices of the crossing graph: If both vertices are in the same color, the
square and the dot are in that color, i.e., “ ” and “ ” if both are red, and “ ” and “ ” if both are
green. If the two vertices are in different colors, the square and dot is gray, “ ” and “ ”. In the
left side of the figure, the colors are according to an optimal 2-coloring where the optimality,
72 monochromatic crossings, is proven by the LP-5 lower bound. The right side of Figure 12
shows the same adjacency matrix with a 3-optimal coloring with 97 monochromatic crossings,
i.e., a local optimum that has 25 more monochromatic crossings than the globally optimal one.

x-coordinate y-coordinate
0.293621540367584 -0.654331384542488
-0.369389604540473 0.484346230374869
0.0201655518276823 -0.0288584754094638
0.0314579750123125 -0.275797325975042
0.567905091127356 -0.206021530902484
-0.627667065973825 0.630323880804552
0.615036514366687 0.162729939245451
0.372665583257629 0.310953969342043
0.0735417752851854 -0.332551613198758
-0.288337988592218 -0.320819491010896

0.00654308455385613 0.0844978120806193
-0.325958310747484 -0.150097634076213

Table 5: Coordinates of an example set of 12 points with a bad local optimum in the gadgets
heuristics
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Figure 11: Illustration of the example drawing of K12 with coordinates given as in Table 5

Figure 12: Adjacency matrix of the crossing graph as dot plot
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